6 research outputs found

    Data-Efficient Classification of Birdcall Through Convolutional Neural Networks Transfer Learning

    Full text link
    Deep learning Convolutional Neural Network (CNN) models are powerful classification models but require a large amount of training data. In niche domains such as bird acoustics, it is expensive and difficult to obtain a large number of training samples. One method of classifying data with a limited number of training samples is to employ transfer learning. In this research, we evaluated the effectiveness of birdcall classification using transfer learning from a larger base dataset (2814 samples in 46 classes) to a smaller target dataset (351 samples in 10 classes) using the ResNet-50 CNN. We obtained 79% average validation accuracy on the target dataset in 5-fold cross-validation. The methodology of transfer learning from an ImageNet-trained CNN to a project-specific and a much smaller set of classes and images was extended to the domain of spectrogram images, where the base dataset effectively played the role of the ImageNet.Comment: Accepted for IEEE Digital Image Computing: Techniques and Applications, 2019 (DICTA 2019), 2-4 December 2019 in Perth, Australia, http://dicta2019.dictaconference.org/index.htm

    Automatic segmentation of kidney and liver tumors in CT images

    Get PDF
    Automatic segmentation of hepatic lesions in computed tomography (CT) images is a challenging task to perform due to heterogeneous, diffusive shape of tumors and complex background. To address the problem more and more researchers rely on assistance of deep convolutional neural networks (CNN) with 2D or 3D type architecture that have proven to be effective in a wide range of computer vision tasks, including medical image processing. In this technical report, we carry out research focused on more careful approach to the process of learning rather than on complex architecture of the CNN. We have chosen MICCAI 2017 LiTS dataset for training process and the public 3DIRCADb dataset for validation of our method. The proposed algorithm reached DICE score 78.8% on the 3DIRCADb dataset. The described method was then applied to the 2019 Kidney Tumor Segmentation (KiTS-2019) challenge, where our single submission achieved 96.38% for kidney and 67.38% for tumor Dice scores

    Automatic sorting of Dwarf Minke Whale underwater images

    Get PDF
    Abstract: Apredictableaggregationofdwarfminkewhales(Balaenopteraacutorostratasubspecies) occurs annually in the Australian waters of the northern Great Barrier Reef in June–July, which has been the subject of a long-term photo-identification study. Researchers from the Minke Whale Project (MWP) at James Cook University collect large volumes of underwater digital imagery each season (e.g., 1.8TB in 2018), much of which is contributed by citizen scientists. Manual processing and analysis of this quantity of data had become infeasible, and Convolutional Neural Networks (CNNs) offered a potential solution. Our study sought to design and train a CNN that could detect whales from video footage in complex near-surface underwater surroundings and differentiate the whales from people, boats and recreational gear. We modified known classification CNNs to localise whales in video frames and digital still images. The required high classification accuracy was achieved by discovering an effective negative-labelling training technique. This resulted in a less than 1% false-positive classification rate and below 0.1% false-negative rate. The final operation-version CNN-pipeline processed all videos (with the interval of 10 frames) in approximately four days (running on two GPUs) delivering 1.95 million sorted images

    Automatic weight estimation of harvested fish from images

    No full text
    Approximately 2,500 weights and corresponding images of harvested Lates calcarifer (Asian seabass or barramundi) were collected at three different locations in Queensland, Australia. Two instances of the LinkNet-34 segmentation Convolutional Neural Network (CNN) were trained. The first one was trained on 200 manually segmented fish masks with excluded fins and tails. The second was trained on 100 whole-fish masks. The two CNNs were applied to the rest of the images and yielded automatically segmented masks. The one-factor and two-factor simple mathematical weight-from-area models were fitted on 1072 area-weight pairs from the first two locations, where area values were extracted from the automatically segmented masks. When applied to 1,400 test images (from the third location), the one-factor whole-fish mask model achieved the best mean absolute percentage error (MAPE), MAPE = 4.36%. Direct weight-from-image regression CNNs were also trained, where the no-fins based CNN performed best on the test images with MAPE = 4.28%

    Minke whale detection in underwater imagery using classification CNNs

    No full text
    A predictable aggregation of dwarf minke whales occurs annually in the Australian offshore waters of the northern Great Barrier Reef in June-July, which has been the subject of a long-term photo-identification study. Researchers from the Minke Whale Project (MWP) at James Cook University collect large volumes of underwater digital imagery each season (e.g. 1.8TB in 2018), much of which is contributed by citizen scientists. Manual processing and analysis of this quantity of data had become infeasible, and Convolutional Neural Networks (CNNs) offered a potential solution. Our study sought to design and train a CNN that could detect whales from video footage in complex near-surface underwater surroundings containing multiple peo- ple, boats, research and recreational gear. We modified known classification CNNs to localize whales in video frames and digital still images. The required high detection accuracy was achieved by discovering an effective negative-labeling training technique. This resulted in a less than 1% false-positive detection rate and below 0.1% false-negative rate. The final operation-version CNN- pipeline processed all videos (with the interval of 10 frames) in approximately four days (running on two GPUs) delivering 1.95 million sorted images
    corecore